

www.iaset.us editor@iaset.us

THE ROLE OF AUTOMATED TESTING FRAMEWORKS IN REDUCING MOBILE

APPLICATION BUGS

Jaswanth Alahari
1
, Dheerender Thakur

2
, Er.Kodamasimham Krishna

3
, Dr S P Singh

4
, & Prof.(Dr.) Punit Goel

5

1Srihari Nagar, Nellore, Andhra Pradesh, India

2
Puranapul, Hyderabad, Telangana, India,

3Mehdipatna Puppalaguda, Telangana, India

4
Ex-Dean, Gurukul Kangri University, Haridwar, Uttarakhand, India

5Research Supervisor, Maharaja Agrasen Himalayan Garhwal University, Uttarakhand, India

ABSTRACT

In the continuously changing field of mobile application development, it is of the utmost importance to guarantee to users

that they will have satisfactory experiences. The use of automated testing frameworks is an essential component of this

endeavour, as they provide a substantial contribution to the reduction of problems and the enhancement of the general

dependability of the application. In the context of mobile apps, this study investigates the essential role that automated

testing frameworks play, with a particular focus on the influence that these frameworks have on the reduction of bugs and

the protection of quality.

In order to uncover inconsistencies, automated testing frameworks are developed to carry out pre-scripted tests

on software applications. These frameworks then compare the actual results with the anticipated results in order to

evaluate the findings. A systematic method to testing is provided by these frameworks, which is necessary in the mobile

domain since devices in this domain vary greatly in terms of the operating systems they use, the screen sizes they have, and

the hardware configurations they have. Within the context of the testing lifecycle, the article goes into a variety of

automated testing frameworks, such as unit testing, integration testing, and end-to-end testing, each of which serves a

distinct function.

The primary objective of unit testing frameworks, which include XCTest for iOS and Espresso for Android, is to

test individual components of an application in isolation. Unit tests assist developers in addressing problems before they

spread to subsequent stages of the development process by identifying defects at an earlier level in the development cycle.

Applications such as Appium and Detox are examples of integration testing frameworks. These frameworks assess the

interaction between various components or systems, with the goal of verifying that integrated portions of the application

perform together without any hitches. Frameworks for end-to-end testing, such as Selenium and TestComplete, replicate

real-world user situations in order to assess the functioning of an application across a variety of devices and contexts.

Numerous benefits may be gained by the incorporation of automated testing frameworks into the development

cycle. The use of automated tests allows for more frequent and comprehensive testing to be performed without the resource

limits that are associated with manual testing. Automated tests execute reliably and fast. The development process is sped

up as a result of this efficiency, which enables developers to offer apps of higher quality in a shorter amount of time. Not

only that, but automated testing frameworks provide comprehensive and repeatable test results, which makes it much

simpler to recognise and address any problems that may arise. The application's resilience is further improved by the

International Journal of Computer Science

and Engineering (IJCSE)

ISSN (P): 2278–9960; ISSN (E): 2278–9979

Vol. 11, Issue 2, Jul–Dec 2022; 75–90

© IASET

76 Jaswanth Alahari, Dheerender Thakur, Er.Kodamasimham Krishna, Dr S P Singh, & Prof.(Dr.) Punit Goel

Impact Factor (JCC): 8.5226 NAAS Rating 3.17

capability to conduct tests across numerous devices and configurations. This assures compatibility and performance under

a variety of scenarios, which further increase the application's robustness.

It is important to note that the installation of automated testing frameworks is not without its difficulties. In order

to develop and maintain a complete suite of automated tests, a great amount of work and knowledge is required. In order

to create successful test scripts, one must have a comprehensive grasp of the functioning of the application. The initial

setup and configuration of testing frameworks may be a complicated process. In addition, there is a possibility that

automated testing may not always identify some kinds of problems, such as those that are associated with the user

experience or visual design.

In spite of these obstacles, automated testing frameworks provide significant advantages in terms of lowering the

number of defects that are present in mobile applications. They provide an approach to quality assurance that is both

methodical and effective, therefore reducing the likelihood of faults and improving the overall user experience throughout

the process. It is becoming more important to have automated testing frameworks in place as mobile apps continue to

spread and develop. By incorporating these frameworks into their development processes, organisations have the ability to

achieve greater levels of software quality, shorten the amount of time it takes to bring a product to market, and satisfy the

rising expectations of customers for mobile apps that are dependable and perform well.

KEYWORDS: Automated Testing Frameworks, Mobile Application Bugs, Quality Assurance, Test Automation, Bug

Reduction, Testing Tools, Mobile App Development, Continuous Integration, Test Coverage, Defect Detection

Article History

Received: 20 Aug 2022 | Revised: 02 Sep 2022 | Accepted: 08 Sep 2022

